PHYSICAL REVIEW E VOLUME 61, NUMBER 2 FEBRUARY 2000

Dynamic light scattering as a probe of orientational dynamics in confined liquid crystals
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The eigenmodes of director orientational fluctuations in nematic liquid crystals in confined geometries were
studied both theoretically and experimentally by dynamic light-scattering tehnique. The fundamental mode of
the orientational fluctuations shows a crossover from bulk behavior, dominated by bulk elastic cknstant
surface dominated one, in which the relaxation rate is determined by the ratio of surface anchoring ¥{rength
and viscosityn. The contribution of surface viscosityis also significant when its characteristic lengthy
becomes comparable to the size of the confined system. It was measured in nematic liquid crystal in cylindrical
pores of polycarbonatéNucleporé membranes to be of the order of 10 nm.

PACS numbe(s): 61.30.Gd, 64.70.Md, 42.70.Df, 78.35

[. INTRODUCTION tion arises whether also the viscous surface torque must be
taken into account. The problem is similar to the case of
Pioneering work on dynamic light scatterif@LS) in  ordinary fluids where one argues whether the fluid velocity at
bulk nematic liquid crystals has been done decades ago Bjie boundaries is equal to zero or fg}. If the orientation of
Orsay Liquid Crystal Groug1,2]. It is a very convenient the nematic director at the surface changes with time, one
method to study the dynamics of orientational fluctuations ofvould expect a kind of dissipation connected with this mo-
order parameter in different liquid crystalline phases. Usingion. Usually this dissipation is described by introducing a
this method in bulk nematic liquid crystals one can measursurface orientational viscositisee for example, Re{6]).
elastic constants and viscosity coefficients. This quantity has dimensions poise.m and strictly speaking,
Well-known turbid appearance of nematic liquid crystalsi?f not a viscosity but more something like a friction coeffi-
is due to the scattering of light on thermally excited orienta-Clent.
tional fluctuations of nematic director. In the bulk the eigen- N this paper, we want to show how the surface properties
modes of these orientational fluctuations are exponentiallipffect the eigenmodes of orientational fluctuations and how
relaxing plane waves with relaxation rates that depend on théey can be measured in the DLS experiments. Particular
viscoelastic properties of the material and on the wave vecattention is given to the analysis of the scattering cross sec-

tors of the modes. The spectrum of the fluctuations is contion. In Sec. Il, we sketch how one calculates the eigenmodes
tinUOUS, i_e_, all wave Vector(within the continuum theoﬂy of orientational fluctuations and their relaxation rates. We

are a”owed' and the dispersion relation is typ|ca| of hydro_ShOW how the eigenmode structure and the relaxation rates

dynamic modes with the relaxation rate proportional to theare affected by the surface properties. In Sec. lll, light scat-
Square Of the wave vector. In DLS experiment one measurégring on the eigenmodes Of direCtor 0rientati0na| f|UCtua-
the relaxation rate of the eigenmode, which has the wav&ons is calculated and in Sec. IV experimental results and
vector that is equal to the scattering vector. Typically in thediscussion are given.
experiment, one changes the scattering vector and therefore
obtains the dispersion relation,_ i.e., relaxa_tion rate Vs Wave, £/cENMODES OF ORIENTATIONAL ELUCTUATIONS
vector. The results of the experiments are in good agreement
with the continuum description of the nematic phase and its In order to understand the results of the DLS experiments
orientational fluctuation§3]. in confined nematic liquid crystals two things must be con-
An important property of the liquid crystals is their inter- sidered. First, the size of a typical cavity is not large com-
action with surface¢4]. In the case of the nematic liquid pared to the wavelength of light and that must be considered
crystals one usually describes the interaction of the liquidn the analysis of scattering. And secondly, due to the con-
crystal with the surface in terms of the preferred orientatiorfinement, the eigenmode structure of the orientational fluc-
of the nematic director at the surface, called easy directiortuations in the nematic liquid crystal changes. Instead of
and the strength of the interaction. Formally speaking, theolane waves and continuous spectrum as in the case of the
easy direction is the direction of the director at which thebulk nematic liquid crystals, the eigenmodes are standing
surface energy is minimal. The strength of the interaction isvaves with shape depending on the geometry of the cavity,
given by the quantity called anchoring strength, which tellsi.e., sinusoidal standing waves in the rectangular geometry
what torque is needed to deviate the orientation of the dired-7], similar to Bessel and Neumann functions in the cylinders
tor from the easy direction. In the continuum theory, one[8], to spherical Bessel functions in the droplgd$ etc. The
includes the presence of surface by boundary conditions. Iallowed values of the wave vectors, or more precisely, of the
the static case, the boundary conditions simply state that bul&igenvalues are discrete and depend on the boundary condi-
torques (elastic torque, torques due to external figldse tions.
balanced by the surface one. In the dynamic case the ques- The eigenmodes of director orientational fluctuations are
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exponentially relaxing modes with relaxation rate, which isThe last expression simply reflects the fact, that due to the
in one elastic constant approximation given by the expresfluctuation a deformation of the director appears and there-

sion[3] fore an elastic torque appears that forces the director back to
its equilibrium orientation. A viscous torque opposes this
1 Kk motion.
w 7 (@) In weak anchoring regime the amplitude of the director

orientational fluctuations at the surface is not zero, so in
whereK is an effective Frank elastic constant andan ef-  addition to the bulk elastic torque also surface elastic torque
fective bulk viscosity. The eigenvaluég can be calculated contributes to the restoring torque on the director. To see
from dynamic equation9] how this affects the relaxation times of the orientational fluc-

tuations one has to look at the boundary conditions,
1%

—n, 2

V2n—(n-V2n)n= F

IS

FKY (2,t) = WHz,t) = LHZ, )| 1= < g2 (6)

wheren(r,t) is director and can be written as a sum of static

part no(r) that describes its equilibrium configuration and Where ¥ is the angle between the actual orientation of the
small, time-dependent pasn(r,t) that describes the orien- director and its eqw_llbrlum orientation. Equati¢®) is sim-
tational fluctuations around the equilibrium configuration. ByPly @ balance equation for the torques at the surface. It leads
knowing the static configuration, i.e., the solution of the Eq.t0 secular equations for even and odd modes, respectively
(2) with 9/9tn=0, one can calculate the eigenmodes of ori-

entational fluctuations by linearization of the E2) in terms kd r(kd) d d¢ ,

of én, Zta 2 :ﬁ_ﬂk ' @)

V28n—(ng- V2ng) 8n—(ny- V26n)ng

) 5 kd [kd d d¢ 2 g
—(8n-Vng)ny= —kyn. 3 ?CO > ——54';7 8
The solutions of Eq(3) depend on the shape of the cavity
and boundary conditions], for thek and hence for the relaxation time. The extrapolation
length is given byh=K/W. We have examined the first
K(v-V)on—W(ng- dn)ny+2W(ny-ng)(ny- n)ng three modes. Figure 1 shows how the shape of the modes,

2o . i.e., the eigenvalu&, depends on the anchoring strength, if
+W(ny-ng)“on=—{an, @ the surface viscosity is small. The deformation of the direc-

tor throughout the layer is smaller than in the case of the
strong anchoring regime, in fact the weaker is the anchoring
the smaller is the deformation inside the layer. In the case of

wherew is unit vector normal to the surface, is the orien-
tation of the director preferred by the surfa®®,is the sur-

face anchoring strength, andis the surface orientational the fundamental mode and a very weak anchorimgd, the

V'S.?_?]‘Z?ﬁost simole one-dimensional confined svstem. i.e geformation inside the layer almost vanishes. The higher
nematic laver hzs been treated both theoretig@ﬂyaﬁd. " modes are less affected by the anchoring. From the compari-

. yer, . son of the amplitude of the first odd mode for strong anchor-
experimentally [10]. It has been shown how anchoring

strength affects the relaxation rates of the orientational fluc'-?]g arr:d (;O:: |nf|n|t_ely V}'eﬁk gnchonr]:_g:l:jg_. 1). doneh CT” see d
tuations, but the influence of the surface orientational viscost— at the deformation of the director field inside the layer an
ity has n,ot been examined yet. Since this is the system Whertgerefore the bulk elastic torquproportional to the deriva-
y ! yet. : e Sy . tive of the amplitudg dominates also for the case of the
one can understand physics best, we will review most impor-

tant results. In a uniform nematic layer placed between tw weak anchoring and therefore always gives the main contri-

X ution to the relaxation time, i.e., from strong to infinitely
equally treated glass plates the shape of the eigenmode of the . T

! . . - ; weak anchoring the relaxation time changes only by a factor
orientational fluctuations is cdsd) and sink2) for even and

odd modes, respectively. The z axis is perpendicular to é)f four.
’ P Y- Perp The effect of the surface viscosity on the eigenvalue of

[;ergftt;ﬁ!a:;sa&d;g é?y:r:\r/‘i;zi:;?ﬂ:z Z{ tgﬁﬁ'}%ﬁi; prhethe modes is different than the effect of the anchofiiRig.
y 9 g 2). Similar to the surface extrapolation length for the anchor-

orientational fluctuations are denoted kyin the case of a ing one can define a lengti=¢/7 to describe the dissipa-

strong anchoring regime, 1.€., the dqectorl orientation on th c;on at the surface. It affects the eigenvakisignificantly
surface does not deviate from the orientation that is preferre . . ;
only whenh=d. While the anchoring can change the eigen-

by the surface, the amplitude of the orientational fluctuations . .
: . value of the modes only byr/d, the surface viscosity can
on the surface is equal to 0, eigenvalues ke (N

+1)m/d (N=0.1,...), and therelaxation time depends reduce it by 2r/d (Fig. 2. This means that not only the

onlv on the bulk viscoelastic proverties of liquid crvstal andrelaxation time of the fundamental mode goes to infinity with
y o prop q y increasingh, but also the first odd mode. Another interesting
the thickness of the layer,

feature is that, wheh>d, the second even mode becomes
42 the same as the fundamental mode in the case of the strong
r= ’7—_ (5)  anchoring(Fig. 2. The origin of the surface viscosity, how-
K(N+1)?7? ever, is not very clear. It can be due to dissipation coming
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Z/d FIG. 2. Calculated normalized amplitude of the first three modes
FIG. 1. Calculated normalized amplitude of the first three moded" @ nematic layer for different values of the surface viscosity,
in a nematic layer for different values of anchoring, stratige), ~ /2d=0.01(dashedl h/2d=1 (dots, h/2d=100 (dot-dasheyj A/d
intermediate\/d=0.5 (dashed and weak/d=500 (dot§ anchor- =0.5 in all three cases. Line presents a strong anchoring case.
ing. h/2d=0.001.

100 nm. To observe the contribution of the surface orienta-
from surface processes like adsorption desorption or molecutonal viscosity one would probably need to measure the lay-
lar slipping on the surface. What are the possible valueh for ers of the thicknesses of a few 10 nm and very thin layers are
is an open question. experimentally very difficult to prepare and the intensity of

The mode that can be easily used to measure the propeight scattered by a single layer becomes very low.
ties of the surface interaction is the fundamental mode. For In other confined systems the situation is more complex,
d=<\ the secular equation yields approximate solution forthe equilibrium configuration of the director is not uniform

the relaxation time of the fundamental mode and the calculation of the eigenmodes is more involved. The
most simple and experimentally accessible confined system
nd> qpd ¢ in two dimensions is liquid crystal embedded in cylindrical
L W“L WVJF W' ©) pores of either polycarbonai@&uclepore or silica (Anop-

ore) membranes. Also in the cylinder the properties of the
The first term is usual bulk term and it preva“s upon thefundamental mode are similar to those in the Iayer. We focus
second one when the thickness of the layer is much largeqn the liquid crystal embedded in Nuclepore membranes,
than the surface extrapolation length i.e., in the strong since those were used in our experiments. The equilibrium
anchoring regime where the relaxation time is given by ex<configuration of the director field in the pores of Nuclepore
pression(5). The second term describes the contribution ofMeémbranes is known to be either escaped radial with point
the surface elastic torque to the relaxation of the director irf€fects or, for small anchoring strength, planar polar where
the layer, while the last term comes from the relaxation ofthe director is in the plane perpendicular to the cylinder axis
the director at the surface and it does not depend on thand nearly perpendicular to the pore walls except at two
thickness of the layer. Numerical examination of the &y.  ©OPPosite points on the perimetgt1,12. In the one elastic
has shown that the expressi(®) is a good approximation constant approximation, the analytic form of static director
a|so for the |ayer thicknesses Somewhat |arger tharBy Configuration Of the |at.'[el’ iS knOVVEﬂ.Z] From th|S Solution
measuring the thickness dependence of the relaxation rate ¥ deduced the linearized equation of the fluctuations in the
the fundamental mode one can, in principle, obtain both théxial directionu of the static structure in the following form:
anchoring strength and the surface viscosity. Experimentally
in the layer only the first has been measuf&@], however, 4222
the thinnest layer measured in those experiments had a thick- V2u+ il u
ness of 125 nm. That could indicate thatvas smaller than R*+ y2r*—2v?R?r? cos 2p

=—Kk%u, (10
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50 == tions to Eqgs.(10) and (11) shows that this approximation
|30 . ) holds reasonably well even whansR (Fig. 3). Expression
g 25 ° (13 is very similar to the situation in the layer, i.e., expres-
40 “g 20 L sion(9). As in the case of a nematic layer, the second term in
[ § 12 Eqg. (13) dominates whem =R so the orientational fluctua-
§ 30 |2 o5 tions in this case are governed by surface anchoring and not
; og by bulk orientational elasticity. The contribution of the sur-
.0 01 02 03 04 05 06 07 ) . . . .
=] Radius R (m) face viscosity is the same in both cases.
< 20
Ex Ill. LIGHT SCATTERING
)
& 10 The light is scattered by the inhomogeneities of the di-
electric tensore. In the dipole far-field approximation and
- . . for the processes that are slow compared to the frequency of
00 1 2 3 light w, the electric field amplitude of the scattered light with
the wave vectok;, and the polarizatiof is given by[13]
Radius R (um) ,
FIG. 3. The dependence of the calculated relaxation fimthe Es(Q,t)= E0w2 f e "9 fg(r,t)-i]d%, (14
units of (2\)25/K] of the fundamental eigenmode of the director 4mC"s ) Vscar

orientational fluctuations on the radius of the cylin¢grcles. The . .
line is approximate relaxation time given by expressiag). A wheres is the distance between the sample and detector,

=100 nm anch=40 nm. Inset: Comparison of the calculated av- the Speed_ of light in ‘_’aC_UUm arq_j: ki—k; the scattering
erage relaxation time measured in the scattering experimeqt at VECtOr-Eq is the electric field amplitude; the wave vector,

=5/um (diamonds and the relaxation time of the fundamental andi the polarization of the incident light. Dielectric tensor
mode(circles. g(r,t) can be expressed in terms of nematic director, i.e., its

dynamic part in the terms of eigenmodes of director orienta-
where ¢ is the polar coordinate andy=(y4\%2+R?  tional fluctuations. When scattering volum&,y is large

—2\)/R. The boundary condition fou reads compared to the wavelength of light, the integral in expres-
sion (14) is a Fourier transform of a given component of the
du r{ du dielectric tensor. So in the bulk nematic, where eigenmodes

2(y+y?+y°cos 2p)u+r ok ol =9 D are plane waves, in the light-scattering experiment at a given
R scattering vector one probes modes with the wave vector
For \>R, that is for small anchoring strengthi=R/4\, so  €qual to the scattering vector. When the size of the scattering
we may seek an approximate solution to EG€) and(11)  volume is comparable to the wavelength of light, the scatter-
correct to linear terms iry. This gives us just the standard N vector need not match any mode wave vector and several
Helmholtz equation with mixed boundary conditions, so themodes contribute to scattering. In the case of cylindrical ge-

eigenvalues are given as the solution of the transcendent@Metry and planar equilibrium configuration of the director
equation the eigenmodes are products of axaf??, polare” ™, and

radial parts. The radial parts of the eigenmodes are approxi-
5 mately Bessel functiond(kyr). The contribution of the
)\kN)‘]O(kNR)’ (12 eigenmode with the eigenvalikg, to the first-order correla-
tion function(measured in the heterodyne regime of scatter-
whereJy(kyR) andJ;(kyR) are Bessel functions of the first ing) [13] (E5 (q,t)Eg(q,t+ 7)), i.e., to the differential scat-
kind. Figure 3 shows the dependence of the relaxation timéering cross section of the mode, is then proportional to
of the fundamental mode on the radius of cylindrical pores
numerically calculated from Ed12). While for large radii 5(q_kz)f
the dependence of its relaxation time on the radius is qua- Kn
dratic, it is linear for small radii. FOx >R, to calculate the
fundamental eigenvalue we can expand the right hand side @¥hereq; andq, are the components of the scattering vector
Eq. (12) in power series and calculakeg to the second order parallel and perpendicular to the cylindrical axis, respec-
in 1/R. Using Eq.(1) we then get for the relaxation time of tively, andk, the eigenvalue of the axial part of the eigen-
the fundamental mode of the planar structure with weak anmode. In the following we will discuss modes with zero axial

{

2

RJm(kNr)Jm(mr)rdr ; (15
0

choring component of the wave vectd,=0. If k,#0, it only con-
tributes a termK/ 7k to the relaxation rate of the modes.

7R*> Ry { Figure 4 shows calculated differential scattering cross

= 8_K+ W+ W' (13 sections for the first four modes vs scattering vector. The

scattering from the fundamental mode strongly prevails over
The corrections to the relaxation time due to the second terrthe contributions of the other modes for large range of values
in Eqg. (10), which can be obtained by perturbation theory,of gR. That means that in the scattering experiment one
are proportional toy?, so they do not influence the leading measures mostly the fundamental mode up to scattering vec-
terms in Eq.(13). Also, numerical examination of the solu- tors a few times larger thanR/
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FIG. 6. The relaxation rate of the orientational fluctuations vs

the scattering vector. The scattering vector is perpendicular to the
axis of the cylindrical pores. Dots are guides to the eyE. (
=295 K).

Scattering vector (gR)

FIG. 4. The differential scattering cross secti@mb. unit$ vs
scattering vector for the slowest four modagR=0.5 andh/2R

=0.001. . T . .
The situation is similar in all confined systems. At a given

Figure 5 shows the dependence of calculated average reeattering vector one always measures contribution of sev-
laxation rate vs scattering vector. While in the bulk this de-eral modes. How much a given mode contributes depends on
pendence is equal to the dependence of the relaxation rate bbw well it is coupled with a plane wawe %". In the layer,
the orientational fluctuations on the wave vector, the situafor example, the contribution of the fundamental mode to the
tion in cylindrical geometry is different. FogR<2, the scattering is also significant up to scattering vectors that are
measured relaxation rate is equal to the relaxation rate of thequal to the wave vectors of a few next modes, but when the
fundamental mode of director orientational fluctuations. Thascattering vector is equal or very close to a wave vector of a
means that also at the scattering vector equal to the eigegiven mode the contribution of this mode always prevails
value of the second mode the scattering from the fundamen7].
tal mode prevails. This can also be seen in Fig. 4, where the
first peak of the differential cross section of the second mode
lays within the peak of the fundamental mode, which is quite
different from the selection rules valid for the bulk. While in  As shown in the previous sections, well-defined geometric
the bulk the dependence of the measured relaxation rate watic properties of the nematic liquid crystal embedded in
scattering vector gives the ratkd/», obviously this is not cylindrical pores of the Nuclepore membranes allow us to
the case in cylinders. On the other hand, express¢i@  fully analyze the light scattering data. In the following, we
shows that this information can be obtained by measuring theill present results of the DLS experiments performed in this
dependence of the relaxation rate on the radius. system, of which a brief report has already been given in
Ref. [14].

IV. EXPERIMENTS AND DISCUSSION

25+ bulk Our samples were prepared similarly as described in Ref.
1 pmaenm [11]. A piece of membrane was wetted with the liquid crystal
5 ® R=300 4-pentyl-4’-cyanobipheny(5CB) that filled the cylindrical
OF m A-40 pores of the membrane due to the capillary action. The re-
N 15 0.35
m L
i~ 030+
e 10
= 025
5 . 020r
E o015}
[ od F
0 010}
Scattering vector (10°/m) 0051
098 00 0.05 0.10 0.15 020

FIG. 5. The dependence of calculated measured relaxation rate
vs scattering vector for different radiR=100 nm(solid line), R
=200 nm (dashedf R=300 nm (dot), and R=400 nm (dot-
dashed The relaxation rates of the eigenmodes of director orienta- FIG. 7. Dependence of the relaxation rate of the fundamental
tional fluctuations for different radii are also plotted for comparison.mode on the cylinder radius at different tempertures. Lines are the
Thin line presents the bulk case=100 nm anch=10 nm. second order polynomial fits.

Radius (um)
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FIG. 8. Temperature dependence of the inverse penetratiothe extrapolation length, plotted vsT in Fig. 8. The con-
depth. Inset: comparison of measured diffusiviiyll circles) with stant term can be used to dgetand it is shown in Fig. 9. The
the diffusivities of pure modes where the backflow is not consid-quadratic coefficient, giving the bulk orientational diffusivity
ered. K/#%, can only be obtained fofy,—T>0.5 K and then is

quite scattered, but the average value is of the order of
maining liquid crystal on the surface of the membrane wasi0~1° m?/s, which is close to the known bulk values for
removed by pressing the membrane between two WhatmaBCB if we assume that backflow does not contribute to the
filtration papers and then the filled membrane was placeeffective viscosity(inset of Fig. 8. The correct value for the
between two glass plates. The refractive index of the polyquadratic coefficient gives a strong support to our analysis.
carbonate Nuclepore membranes approximately matches the The dependence of * on T in Fig. 8 is nearly linear, so
average refractive index of the 5CB, so multiple scattering irthat A ~ 1< S?, whereSis the scalar order parameter. Ks
the samples was negligible. «$? [3], andA=K/W, WexS* That\ increases a3 ap-

The light source was a He-Ne laser with the wavelengthproachesTy, has also been observed by other authafs.
of 632.8 nm. The intensity correlation function was mea- Using the known values foK, we get that the surface
sured using an ALV5000 correlator that enables measureanchoring strength is 810° J/n? close to Ty, and 5
ments over a time range of 18-1C° s. We have measured <10 ° J/m?4 K below Ty,. At these anchoring strengths
the normalized intensity correlation functiog®(7) the deuterium nucler_;lr magnetic resonance experiments have
= (1 ()1 (t+ 7)) (D)) (t+7)) of light exiting the sample shown that the configuration of the director is planar polar

as a function of scattering angle, the radius of cavities an&l%ur measured values fdr, i.e., the ratioz/ 7, shown in
the temperature. The incoming and scattered d|re_ct|ons Werﬁg. 9, are in the range of mc’)Iéc.L;Iar size. Thiz,,is similar as is
chpsen so that the scattering vector was perpendmulz_ar to tho%tained for the translational surface friction in ordinary lig-
axis of t.he POres. Fo!lowmg the selection rules, by which thE’uids [5]. £ has also been obtained in rather different condi-
orientational fluctuations are coupled to the off-diagonal eI—tions in.Ref [16]. There the obtained rati¢y 5 is of the order
gmgnts of 'the' dielectric tensor, we chose orthogonal polarc-)f extrapolation length, a macroscopic length having nothing
izations of mmdent_and s_cattered I'g_ht' . to do with dissipation and nearly two orders of magnitude
The measured intensity correlation functions showed 3arger than our value. The existence of a surface specific
well-defined relaxation component, which is due to the ori-gissipation coefficient has been a matter of some debate
entational director fluctuations in the pores. The amount ofg 16,17. Durand and Virgd6] presented a model where the

statically scattered light off the sample and pore surfaces wagrface dissipation comes only from the director rotation and
such that the measurements were in the heterodyne regimgsociated backflow close to the boundary.

and the relaxation rate of the intensity correlation function is
equal to the relaxation rate of the fluctuations. V. CONCLUSIONS

Figure 6 shows the dependence of the observed relaxation ) - )
rate on the scattering vector. Clearly, at small scattering vec- ' ° conclude, in dynamic light scattering we observed that
tors, the relaxation rates become independenfwhereas it the orlentatlona! fluctuations in small pores are dominated by
increases fo>1/R. One should note somehow surprising surface properties. From thg measurements we deduce_ not
crossings of the curves for different radii. Such crossings cal nly the temperature behgwor of the surface extrapolation
also be observed in Fig. 5, where theoretical prediction i e_ngth.and surfa_ce—anchorlng strenghbut "’.IISO the §urface
shown. The position of the crossings of the experimental anyiscosity coefficient. Its ratio to the bulk viscosity is in the
theoretical results are in good agreement and the reason f&§2n9e of molecular lengths.
them is the specific shape of the differential scattering cross
sections of the mode&ig. 4).

In Fig. 7, measured relaxation timevs R with its fit to This work was supported by the Ministry of Science and
Eq.(13) is shown for several temperatures. The coefficient ofTechnology of Slovenia through Grant No. J1-7474 and the
the linear term, together with the bulk valueskf», gives  European Union through Grant No. IC15-CT96-0744.
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