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Dynamic light scattering as a probe of orientational dynamics in confined liquid crystals

A. Mertelj1 and M. Čopič1,2
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The eigenmodes of director orientational fluctuations in nematic liquid crystals in confined geometries were
studied both theoretically and experimentally by dynamic light-scattering tehnique. The fundamental mode of
the orientational fluctuations shows a crossover from bulk behavior, dominated by bulk elastic constantK, to
surface dominated one, in which the relaxation rate is determined by the ratio of surface anchoring strengthW
and viscosityh. The contribution of surface viscosityz is also significant when its characteristic lengthz/h
becomes comparable to the size of the confined system. It was measured in nematic liquid crystal in cylindrical
pores of polycarbonate~Nuclepore! membranes to be of the order of 10 nm.

PACS number~s!: 61.30.Gd, 64.70.Md, 42.70.Df, 78.35.1c
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I. INTRODUCTION

Pioneering work on dynamic light scattering~DLS! in
bulk nematic liquid crystals has been done decades ag
Orsay Liquid Crystal Group@1,2#. It is a very convenient
method to study the dynamics of orientational fluctuations
order parameter in different liquid crystalline phases. Us
this method in bulk nematic liquid crystals one can meas
elastic constants and viscosity coefficients.

Well-known turbid appearance of nematic liquid crysta
is due to the scattering of light on thermally excited orien
tional fluctuations of nematic director. In the bulk the eige
modes of these orientational fluctuations are exponenti
relaxing plane waves with relaxation rates that depend on
viscoelastic properties of the material and on the wave v
tors of the modes. The spectrum of the fluctuations is c
tinuous, i.e., all wave vectors~within the continuum theory!
are allowed, and the dispersion relation is typical of hyd
dynamic modes with the relaxation rate proportional to
square of the wave vector. In DLS experiment one meas
the relaxation rate of the eigenmode, which has the w
vector that is equal to the scattering vector. Typically in t
experiment, one changes the scattering vector and there
obtains the dispersion relation, i.e., relaxation rate vs w
vector. The results of the experiments are in good agreem
with the continuum description of the nematic phase and
orientational fluctuations@3#.

An important property of the liquid crystals is their inte
action with surfaces@4#. In the case of the nematic liqui
crystals one usually describes the interaction of the liq
crystal with the surface in terms of the preferred orientat
of the nematic director at the surface, called easy direct
and the strength of the interaction. Formally speaking,
easy direction is the direction of the director at which t
surface energy is minimal. The strength of the interaction
given by the quantity called anchoring strength, which te
what torque is needed to deviate the orientation of the di
tor from the easy direction. In the continuum theory, o
includes the presence of surface by boundary conditions
the static case, the boundary conditions simply state that
torques~elastic torque, torques due to external fields! are
balanced by the surface one. In the dynamic case the q
PRE 611063-651X/2000/61~2!/1622~7!/$15.00
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tion arises whether also the viscous surface torque mus
taken into account. The problem is similar to the case
ordinary fluids where one argues whether the fluid velocity
the boundaries is equal to zero or not@5#. If the orientation of
the nematic director at the surface changes with time,
would expect a kind of dissipation connected with this m
tion. Usually this dissipation is described by introducing
surface orientational viscosity~see for example, Ref.@6#!.
This quantity has dimensions poise.m and strictly speak
is not a viscosity but more something like a friction coef
cient.

In this paper, we want to show how the surface proper
affect the eigenmodes of orientational fluctuations and h
they can be measured in the DLS experiments. Partic
attention is given to the analysis of the scattering cross s
tion. In Sec. II, we sketch how one calculates the eigenmo
of orientational fluctuations and their relaxation rates. W
show how the eigenmode structure and the relaxation r
are affected by the surface properties. In Sec. III, light sc
tering on the eigenmodes of director orientational fluctu
tions is calculated and in Sec. IV experimental results a
discussion are given.

II. EIGENMODES OF ORIENTATIONAL FLUCTUATIONS

In order to understand the results of the DLS experime
in confined nematic liquid crystals two things must be co
sidered. First, the size of a typical cavity is not large co
pared to the wavelength of light and that must be conside
in the analysis of scattering. And secondly, due to the c
finement, the eigenmode structure of the orientational fl
tuations in the nematic liquid crystal changes. Instead
plane waves and continuous spectrum as in the case o
bulk nematic liquid crystals, the eigenmodes are stand
waves with shape depending on the geometry of the cav
i.e., sinusoidal standing waves in the rectangular geom
@7#, similar to Bessel and Neumann functions in the cylind
@8#, to spherical Bessel functions in the droplets@9# etc. The
allowed values of the wave vectors, or more precisely, of
eigenvalues are discrete and depend on the boundary co
tions.

The eigenmodes of director orientational fluctuations
1622 ©2000 The American Physical Society
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exponentially relaxing modes with relaxation rate, which
in one elastic constant approximation given by the expr
sion @3#

1

tN
5

KkN
2

h
, ~1!

whereK is an effective Frank elastic constant andh an ef-
fective bulk viscosity. The eigenvalueskN can be calculated
from dynamic equation@9#

¹2n2~n•“2n!n5
h

K

]

]t
n, ~2!

wheren(r ,t) is director and can be written as a sum of sta
part n0(r ) that describes its equilibrium configuration an
small, time-dependent partdn(r ,t) that describes the orien
tational fluctuations around the equilibrium configuration.
knowing the static configuration, i.e., the solution of the E
~2! with ]/]tn50, one can calculate the eigenmodes of o
entational fluctuations by linearization of the Eq.~2! in terms
of dn,

¹2dn2~n0•“
2n0!dn2~n0•“

2dn!n0

2~dn•“2n0!n052kN
2 dn. ~3!

The solutions of Eq.~3! depend on the shape of the cavi
and boundary conditions@7#,

K~n•“ !dn2W~np•dn!np12W~np•n0!~np•dn!n0

1W~np•n0!2dn52zdṅ, ~4!

wheren is unit vector normal to the surface,np is the orien-
tation of the director preferred by the surface,W is the sur-
face anchoring strength, andz is the surface orientationa
viscosity.

The most simple one-dimensional confined system, i.e
nematic layer, has been treated both theoretically@7# and
experimentally @10#. It has been shown how anchorin
strength affects the relaxation rates of the orientational fl
tuations, but the influence of the surface orientational visc
ity has not been examined yet. Since this is the system w
one can understand physics best, we will review most imp
tant results. In a uniform nematic layer placed between
equally treated glass plates the shape of the eigenmode o
orientational fluctuations is cos(kz) and sin(kz) for even and
odd modes, respectively. The z axis is perpendicular t
nematic layer andz50 lays in the middle of the layer. Th
layer thickness isd and eigenvalues of the eigenmodes of t
orientational fluctuations are denoted byk. In the case of a
strong anchoring regime, i.e., the director orientation on
surface does not deviate from the orientation that is prefe
by the surface, the amplitude of the orientational fluctuatio
on the surface is equal to 0, eigenvalues tok5(N
11)p/d (N50,1, . . . ), and therelaxation time depend
only on the bulk viscoelastic properties of liquid crystal a
the thickness of the layer,

t5
hd2

K~N11!2p2
. ~5!
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The last expression simply reflects the fact, that due to
fluctuation a deformation of the director appears and the
fore an elastic torque appears that forces the director bac
its equilibrium orientation. A viscous torque opposes th
motion.

In weak anchoring regime the amplitude of the direc
orientational fluctuations at the surface is not zero, so
addition to the bulk elastic torque also surface elastic tor
contributes to the restoring torque on the director. To
how this affects the relaxation times of the orientational flu
tuations one has to look at the boundary conditions,

7Kq8~z,t !2Wq~z,t !5zq̇~z,t !uz56d/2 , ~6!

whereq is the angle between the actual orientation of t
director and its equilibrium orientation. Equation~6! is sim-
ply a balance equation for the torques at the surface. It le
to secular equations for even and odd modes, respective

kd

2
tanS kd

2 D5
d

2l
2

dz

2h
k2, ~7!

kd

2
cotS kd

2 D52
d

2l
1

dz

2h
k2 ~8!

for thek and hence for the relaxation time. The extrapolati
length is given byl5K/W. We have examined the firs
three modes. Figure 1 shows how the shape of the mo
i.e., the eigenvaluek, depends on the anchoring strength,
the surface viscosity is small. The deformation of the dire
tor throughout the layer is smaller than in the case of
strong anchoring regime, in fact the weaker is the anchor
the smaller is the deformation inside the layer. In the case
the fundamental mode and a very weak anchoring,l@d, the
deformation inside the layer almost vanishes. The hig
modes are less affected by the anchoring. From the comp
son of the amplitude of the first odd mode for strong anch
ing and for infinitely weak anchoring~Fig. 1! one can see
that the deformation of the director field inside the layer a
therefore the bulk elastic torque~proportional to the deriva-
tive of the amplitude! dominates also for the case of th
weak anchoring and therefore always gives the main con
bution to the relaxation time, i.e., from strong to infinite
weak anchoring the relaxation time changes only by a fac
of four.

The effect of the surface viscosity on the eigenvalue
the modes is different than the effect of the anchoring~Fig.
2!. Similar to the surface extrapolation length for the anch
ing one can define a lengthh5z/h to describe the dissipa
tion at the surface. It affects the eigenvaluek significantly
only whenh*d. While the anchoring can change the eige
value of the modes only byp/d, the surface viscosity can
reduce it by 2p/d ~Fig. 2!. This means that not only the
relaxation time of the fundamental mode goes to infinity w
increasingh, but also the first odd mode. Another interesti
feature is that, whenh@d, the second even mode becom
the same as the fundamental mode in the case of the st
anchoring~Fig. 2!. The origin of the surface viscosity, how
ever, is not very clear. It can be due to dissipation com
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1624 PRE 61A. MERTELJ AND M. ČOPIČ
from surface processes like adsorption desorption or mole
lar slipping on the surface. What are the possible values fh
is an open question.

The mode that can be easily used to measure the pro
ties of the surface interaction is the fundamental mode.
d&l the secular equation yields approximate solution
the relaxation time of the fundamental mode

t'
hd2

12K
1

hd

2W
1

z

W
. ~9!

The first term is usual bulk term and it prevails upon t
second one when the thickness of the layer is much la
than the surface extrapolation lengthl, i.e., in the strong
anchoring regime where the relaxation time is given by
pression~5!. The second term describes the contribution
the surface elastic torque to the relaxation of the directo
the layer, while the last term comes from the relaxation
the director at the surface and it does not depend on
thickness of the layer. Numerical examination of the Eq.~7!
has shown that the expression~9! is a good approximation
also for the layer thicknesses somewhat larger thanl. By
measuring the thickness dependence of the relaxation ra
the fundamental mode one can, in principle, obtain both
anchoring strength and the surface viscosity. Experiment
in the layer only the first has been measured@10#, however,
the thinnest layer measured in those experiments had a th
ness of 125 nm. That could indicate thath was smaller than

FIG. 1. Calculated normalized amplitude of the first three mo
in a nematic layer for different values of anchoring, strong~line!,
intermediatel/d50.5 ~dashed! and weakl/d5500 ~dots! anchor-
ing. h/2d50.001.
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100 nm. To observe the contribution of the surface orien
tional viscosity one would probably need to measure the l
ers of the thicknesses of a few 10 nm and very thin layers
experimentally very difficult to prepare and the intensity
light scattered by a single layer becomes very low.

In other confined systems the situation is more compl
the equilibrium configuration of the director is not unifor
and the calculation of the eigenmodes is more involved. T
most simple and experimentally accessible confined sys
in two dimensions is liquid crystal embedded in cylindric
pores of either polycarbonate~Nuclepore! or silica ~Anop-
ore! membranes. Also in the cylinder the properties of t
fundamental mode are similar to those in the layer. We fo
on the liquid crystal embedded in Nuclepore membran
since those were used in our experiments. The equilibr
configuration of the director field in the pores of Nuclepo
membranes is known to be either escaped radial with p
defects or, for small anchoring strength, planar polar wh
the director is in the plane perpendicular to the cylinder a
and nearly perpendicular to the pore walls except at t
opposite points on the perimeter@11,12#. In the one elastic
constant approximation, the analytic form of static direc
configuration of the latter is known@12#. From this solution
we deduced the linearized equation of the fluctuations in
axial directionu of the static structure in the following form

,2u1
4g2r 2

R41g2r 422g2R2r 2 cos 2w
u52k2u, ~10!

s

FIG. 2. Calculated normalized amplitude of the first three mo
in a nematic layer for different values of the surface viscos
h/2d50.01~dashed!, h/2d51 ~dots!, h/2d5100 ~dot-dashed!, l/d
50.5 in all three cases. Line presents a strong anchoring case
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where w is the polar coordinate andg5(A4l21R2

22l)/R. The boundary condition foru reads

F2~g1g21g3 cos 2w!u1r
]u

]r
2

r z

2K

]u

]t G
r 5R

50. ~11!

For l@R, that is for small anchoring strength,g5R/4l, so
we may seek an approximate solution to Eqs.~10! and ~11!
correct to linear terms ing. This gives us just the standar
Helmholtz equation with mixed boundary conditions, so t
eigenvalues are given as the solution of the transcende
equation

2kNlJ1~kNR!5S 12
z

h
lkN

2 D J0~kNR!, ~12!

whereJ0(kNR) andJ1(kNR) are Bessel functions of the firs
kind. Figure 3 shows the dependence of the relaxation t
of the fundamental mode on the radius of cylindrical po
numerically calculated from Eq.~12!. While for large radii
the dependence of its relaxation time on the radius is q
dratic, it is linear for small radii. Forl.R, to calculate the
fundamental eigenvalue we can expand the right hand sid
Eq. ~12! in power series and calculatek1 to the second orde
in 1/R. Using Eq.~1! we then get for the relaxation time o
the fundamental mode of the planar structure with weak
choring

t1'
hR2

8K
1

Rh

W
1

z

W
. ~13!

The corrections to the relaxation time due to the second t
in Eq. ~10!, which can be obtained by perturbation theo
are proportional tog2, so they do not influence the leadin
terms in Eq.~13!. Also, numerical examination of the solu

FIG. 3. The dependence of the calculated relaxation time@in the
units of (2l)2h/K# of the fundamental eigenmode of the direct
orientational fluctuations on the radius of the cylinder~circles!. The
line is approximate relaxation time given by expression~13!. l
5100 nm andh540 nm. Inset: Comparison of the calculated a
erage relaxation time measured in the scattering experimentq
55/mm ~diamonds! and the relaxation time of the fundament
mode~circles!.
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tions to Eqs.~10! and ~11! shows that this approximation
holds reasonably well even whenl&R ~Fig. 3!. Expression
~13! is very similar to the situation in the layer, i.e., expre
sion~9!. As in the case of a nematic layer, the second term
Eq. ~13! dominates whenl*R so the orientational fluctua
tions in this case are governed by surface anchoring and
by bulk orientational elasticity. The contribution of the su
face viscosity is the same in both cases.

III. LIGHT SCATTERING

The light is scattered by the inhomogeneities of the
electric tensor«. In the dipole far-field approximation an
for the processes that are slow compared to the frequenc
light v, the electric field amplitude of the scattered light wi
the wave vectork f , and the polarizationf is given by@13#

Es~q,t !5
E0v2

4pc2s
E

Vscatt

e2 iq•r@ f•«~r ,t !• i#d3r , ~14!

wheres is the distance between the sample and detectoc
the speed of light in vacuum, andq5k f2k i the scattering
vector.E0 is the electric field amplitude,k i the wave vector,
and i the polarization of the incident light. Dielectric tenso
«(r ,t) can be expressed in terms of nematic director, i.e.,
dynamic part in the terms of eigenmodes of director orien
tional fluctuations. When scattering volumeVscatt is large
compared to the wavelength of light, the integral in expr
sion ~14! is a Fourier transform of a given component of t
dielectric tensor. So in the bulk nematic, where eigenmo
are plane waves, in the light-scattering experiment at a gi
scattering vectorq one probes modes with the wave vect
equal to the scattering vector. When the size of the scatte
volume is comparable to the wavelength of light, the scat
ing vector need not match any mode wave vector and sev
modes contribute to scattering. In the case of cylindrical
ometry and planar equilibrium configuration of the direct
the eigenmodes are products of axiale2kzz, polare2mw, and
radial parts. The radial parts of the eigenmodes are appr
mately Bessel functionsJm(kNr ). The contribution of the
eigenmode with the eigenvaluekN to the first-order correla-
tion function~measured in the heterodyne regime of scatt
ing! @13# ^Es* (q,t)Es(q,t1t)&, i.e., to the differential scat-
tering cross section of the mode, is then proportional to

Fd~qi2kz!

kN
E

0

R

Jm~kNr !Jm~q'r !rdr G2

, ~15!

whereqi andq' are the components of the scattering vec
parallel and perpendicular to the cylindrical axis, resp
tively, andkz the eigenvalue of the axial part of the eige
mode. In the following we will discuss modes with zero ax
component of the wave vector,kz50. If kzÞ0, it only con-
tributes a termK/hkz

2 to the relaxation rate of the modes.
Figure 4 shows calculated differential scattering cro

sections for the first four modes vs scattering vector. T
scattering from the fundamental mode strongly prevails o
the contributions of the other modes for large range of val
of qR. That means that in the scattering experiment o
measures mostly the fundamental mode up to scattering
tors a few times larger than 1/R.
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Figure 5 shows the dependence of calculated averag
laxation rate vs scattering vector. While in the bulk this d
pendence is equal to the dependence of the relaxation ra
the orientational fluctuations on the wave vector, the sit
tion in cylindrical geometry is different. ForqR&2, the
measured relaxation rate is equal to the relaxation rate o
fundamental mode of director orientational fluctuations. T
means that also at the scattering vector equal to the ei
value of the second mode the scattering from the fundam
tal mode prevails. This can also be seen in Fig. 4, where
first peak of the differential cross section of the second m
lays within the peak of the fundamental mode, which is qu
different from the selection rules valid for the bulk. While
the bulk the dependence of the measured relaxation rat
scattering vector gives the ratioK/h, obviously this is not
the case in cylinders. On the other hand, expression~13!
shows that this information can be obtained by measuring
dependence of the relaxation rate on the radius.

FIG. 4. The differential scattering cross section~arb. units! vs
scattering vector for the slowest four modes.l/R50.5 andh/2R
50.001.

FIG. 5. The dependence of calculated measured relaxation
vs scattering vector for different radii,R5100 nm~solid line!, R
5200 nm ~dashed!, R5300 nm ~dot!, and R5400 nm ~dot-
dashed! The relaxation rates of the eigenmodes of director orien
tional fluctuations for different radii are also plotted for compariso
Thin line presents the bulk case.l5100 nm andh510 nm.
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The situation is similar in all confined systems. At a giv
scattering vector one always measures contribution of s
eral modes. How much a given mode contributes depend
how well it is coupled with a plane wavee2q•r. In the layer,
for example, the contribution of the fundamental mode to
scattering is also significant up to scattering vectors that
equal to the wave vectors of a few next modes, but when
scattering vector is equal or very close to a wave vector o
given mode the contribution of this mode always preva
@7#.

IV. EXPERIMENTS AND DISCUSSION

As shown in the previous sections, well-defined geome
static properties of the nematic liquid crystal embedded
cylindrical pores of the Nuclepore membranes allow us
fully analyze the light scattering data. In the following, w
will present results of the DLS experiments performed in t
system, of which a brief report has already been given
Ref. @14#.

Our samples were prepared similarly as described in R
@11#. A piece of membrane was wetted with the liquid crys
4-pentyl-4’-cyanobiphenyl~5CB! that filled the cylindrical
pores of the membrane due to the capillary action. The

te

-
.

FIG. 6. The relaxation rate of the orientational fluctuations
the scattering vector. The scattering vector is perpendicular to
axis of the cylindrical pores. Dots are guides to the eye.T
5295 K).

FIG. 7. Dependence of the relaxation rate of the fundame
mode on the cylinder radius at different tempertures. Lines are
second order polynomial fits.



a
m
ce
ly

s
i

gt
a

ur
d

an
e
t

th
e
la

d
ri

t o
w
gi

i

ti
e

g
ca

an
n
os

t o

y

of
r

the

is.

s
have
lar

is
q-
di-

ing
de
ific
ate
e
nd

hat
by
not

tion

e

nd
the

ti

id
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maining liquid crystal on the surface of the membrane w
removed by pressing the membrane between two What
filtration papers and then the filled membrane was pla
between two glass plates. The refractive index of the po
carbonate Nuclepore membranes approximately matche
average refractive index of the 5CB, so multiple scattering
the samples was negligible.

The light source was a He-Ne laser with the wavelen
of 632.8 nm. The intensity correlation function was me
sured using an ALV5000 correlator that enables meas
ments over a time range of 1028– 103 s. We have measure
the normalized intensity correlation functiong(2)(t)
5^I (t)I (t1t)&/^I (t)&^I (t1t)& of light exiting the sample
as a function of scattering angle, the radius of cavities
the temperature. The incoming and scattered directions w
chosen so that the scattering vector was perpendicular to
axis of the pores. Following the selection rules, by which
orientational fluctuations are coupled to the off-diagonal
ements of the dielectric tensor, we chose orthogonal po
izations of incident and scattered light.

The measured intensity correlation functions showe
well-defined relaxation component, which is due to the o
entational director fluctuations in the pores. The amoun
statically scattered light off the sample and pore surfaces
such that the measurements were in the heterodyne re
and the relaxation rate of the intensity correlation function
equal to the relaxation rate of the fluctuations.

Figure 6 shows the dependence of the observed relaxa
rate on the scattering vector. Clearly, at small scattering v
tors, the relaxation rates become independent ofq whereas it
increases forq@1/R. One should note somehow surprisin
crossings of the curves for different radii. Such crossings
also be observed in Fig. 5, where theoretical prediction
shown. The position of the crossings of the experimental
theoretical results are in good agreement and the reaso
them is the specific shape of the differential scattering cr
sections of the modes~Fig. 4!.

In Fig. 7, measured relaxation timet vs R with its fit to
Eq. ~13! is shown for several temperatures. The coefficien
the linear term, together with the bulk values ofK/h, gives

FIG. 8. Temperature dependence of the inverse penetra
depth. Inset: comparison of measured diffusivity~full circles! with
the diffusivities of pure modes where the backflow is not cons
ered.
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the extrapolation lengthl, plotted vsT in Fig. 8. The con-
stant term can be used to geth, and it is shown in Fig. 9. The
quadratic coefficient, giving the bulk orientational diffusivit
K/h, can only be obtained forTNI2T.0.5 K and then is
quite scattered, but the average value is of the order
10210 m2/s, which is close to the known bulk values fo
5CB if we assume that backflow does not contribute to
effective viscosity~inset of Fig. 8!. The correct value for the
quadratic coefficient gives a strong support to our analys

The dependence ofl21 on T in Fig. 8 is nearly linear, so
that l21}S2, whereS is the scalar order parameter. AsK
}S2 @3#, and l5K/W, W}S4. That l increases asT ap-
proachesTNI has also been observed by other authors@15#.

Using the known values forK, we get that the surface
anchoring strength is 331026 J/m2 close to TNI and 5
31025 J/m24 K below TNI . At these anchoring strength
the deuterium nuclear magnetic resonance experiments
shown that the configuration of the director is planar po
@12#.

Our measured values forh, i.e., the ratioz/h, shown in
Fig. 9, are in the range of molecular size. This is similar as
obtained for the translational surface friction in ordinary li
uids @5#. z has also been obtained in rather different con
tions in Ref.@16#. There the obtained ratioz/h is of the order
of extrapolation length, a macroscopic length having noth
to do with dissipation and nearly two orders of magnitu
larger than our value. The existence of a surface spec
dissipation coefficient has been a matter of some deb
@6,16,17#. Durand and Virga@6# presented a model where th
surface dissipation comes only from the director rotation a
associated backflow close to the boundary.

V. CONCLUSIONS

To conclude, in dynamic light scattering we observed t
the orientational fluctuations in small pores are dominated
surface properties. From the measurements we deduce
only the temperature behavior of the surface extrapola
length and surface-anchoring strengthW, but also the surface
viscosity coefficient. Its ratio to the bulk viscosity is in th
range of molecular lengths.
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FIG. 9. Temperature dependence ofh, i.e., surface to bulk vis-
cosity z/h.
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